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Stability of plane Couette-Poiseuille flow 
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The stability of a two-dimensional Couette-Poiseuille flow is investigated. 
The primary unidirectional flow is between two infinite parallel plates, one of 
which moves relative to the other. The results for the case of Poiseuille flow 
agree with Lin’s results and all flows for which the plate velocity exceeds 70 yo 
of the maximum velocity of the Poiseuille component of flow are found to be 
stable for all finite Reynolds numbers. Results of intermediate cases are also 
obtained. 

1. Introduction 
The stability of plane Couette flow and plane Poiseuille flow has been the 

subject of many investigations in recent years. The question of whether plane 
Couette flow is or is not stable to all infinitesimal disturbances and for all 
Reynolds numbers, however large, is still not definitely settled. Recently, 
Deardorff (1963) has shown by a numerical computation that this flow is stable 
for Reynolds numbers less than 5720 (based on channel width and boundary 
speed) and probably stable for all Reynolds numbers. As to plane Poiseuille 
flow, Lin (1945) has verified Heisenberg’s (1924) earlier conclusion that plane 
Poiseuille flow is unstable, and has determined the critical Reynolds number to 
be 10,600 (based on channel width and maximum velocity). His results have 
now been generally accepted. But the stability of combined plane Couette and 
Poiseuille flows has not been investigated so far, and this investigation is to 
furnish the missing information. 

It can be expected that a combination of plane Couette and Poiseuille flow 
will yield instability only at large Reynolds numbers although one does not 
know u priori that a superposition of Couette flow on Poiseuille flow will cause 
the flow to be more or less stable. If instability at  large Reynolds number is 
assumed, asymptotic solutions of the governing Orr-Sommerfeld equation in- 
volving this parameter are appropriate. These asymptotic solutions have singu- 
larities at critical points where the wave velocity of the disturbance is equal 
to the velocity of the primary flow. These singularities, not inherent in the 
governing equation but introduced entirely by the method of solution, present 
difficulties which must be attended to with great care. 

This study, which was also proposed (but unsolved) by Lin in 1945, is a varia- 
tion of the problem discussed in this paper. The difference between this study and 
previous works is that in this investigation both relative motion and a pressure 

7 Presently at Michigan State University. 
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gradient are allowed. Difficulty arises in the numerical solution of the secular 
equation because there may be two critical points when the entire velocity 
profile is used, requiring asymptotic expansions about each point. Lin avoided 
this difficulty by utilizing the symmetry of the primary velocity profile which 
he treated. 

d 

2. Governing differential system 
For steady two-dimensional flow of an incompressible, viscous fluid flowing 

between two parallel plates (see figure 1) the governing Navier-Stokes equation 
can be integrated to yield the velocity distribution of the primary flow 

U( Y )  = ZW( Y2- Yd) + (U2/d) Y ,  

with W denoting the maximum velocity of the Poiseuille component of the flow, 
d the distance between plates, and U2 the speed of the upper plate. If A equals 
unity, Poiseuille flow results and as A approaches infinity the flow tends toward 
Couette flow. 

Let the stream function for the small disturbance be 
$ = $(y) eidz-ct) 

and after the Navier-Stokes equations are linearized and the pressure eliminated 
by cross-differentiation the Orr-Sommerfeld equation 

results, where tc is the non-dimensional wave number, R = Wd/v  is the Rey- 
nolds number, v is the kinematic viscosity, and c = c, + ici is the complex wave- 
speed. 

( U  - C) (9" - a'$) - U"$ = - (i/aR) (p - 2a2$" + a*$) (2) 

The boundary conditions are 
$(O) = #'(O) = $( 1) = +'( 1) = 0. 

c,(a,R) = 0 

The eigen-value problem thus formed requires that 
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if no growth or decay of the disturbance is allowed. The minimumReynolds 
number from the neutral-stability curve representing the above relationship 
is the critical Reynolds number sought after in this study. 

3. Asymptotic solutions 
There exist four independent solutions of equation (2) which will be denoted 

by $,(y), q4(y), Qt4(y). Heisenberg (1924) has given two asymptotic 
methods, each of which yields two particular solutions of equation (2). The 
first of these methods is to expand $(y) in powers of (aR)-l, namely 

$(y) = $‘O’(y)+ ( a R ) - y ( y ) +  (aR)-2$“(y)+ ... 

( U - c) ($‘O)” - a 2 p ) )  - U”$(O) = 0. 

and substitute into equation (2). The term of zero order in (aR)-l yields the in- 

(3) 
viscid equation 

Heisenberg obtained two solutions as convergent series of a2 in the forms 

(4) 
$lO’(Y) = ( U  - c )  [ho(Y) + a  

$C’(Y) = ( U  - c )  [kl(Y) + a2k,(y) + . . ‘It 

I where h,(Y) = 1, 

k2m+3(Y) = j 1) ( u - C ) - 2 d y ~ ~ ( U - c ) Z k 2 ~ + ~ ( Y ) d y . J  

0 

These integrals are complex. The imaginary part is obtained by integrating 
around the critical point where U = c. Heisenberg obtained two other solutions 
in the form 

Expanding f ( y )  in powers of (aR)-B and substituting into equation (2) yields, 
to a first order approximation, 

$ ( Y )  =f(y)exp [rt d(aR)g(y)l. 

These solutions are not valid in the neighbourhood of the critical points where 
U = c. Thus if a boundary occurs close to a critical point (6) and (7) should not 
be used to evaluate $3 and $4 at that boundary. Solutions must be found which 
are valid near the critical points and which approach the solutions (6) and (7)  
away from the critical points. 

For a parabolic distribution there are, at  most, two critical points. Following 
the procedure of Lin, expand $(y )  in powers of (aR)-* and make a change of 
scale such that $(6) = x‘0’(6)+(aR)-3x(l’(~)+ ... , (8) 

39-2 
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where, near the first singular point 

5 = (v - Yc) (Ul.R)t 
and near the second singular point 

5 = (y-y,.) ( -  ULaR)). 

Substituting into equation ( 2 )  yields 

since X(0)" 9 x(o) 

and near the critical points U - c = UA(y - yc). 

The negative sign is used near the first singular point and the positive sign near 
the second. This method yields four solutions near each singular point. It can 
be shown that the solutions near the first singular point 

and near the second singular point 

Q4 = 1' - W  d5/'  -a ( - c ) * H t ) [ f (  -i<)$]d{,  (15) 

approach the solutions 753 and q54, given in equations (6) and ( 7 ) ,  as one moves 
away from the singular point. 

If instability occurs at  a wave-number larger than 0.8 the terms in equations 
(4) may not decrease rapidly enough for a simple solution. With a parabolic 
velocity it may be easier to solve (3) by the Frobenius method. By using this 
method the two solutions found in a region containing the first singular point 
are W 

54 = x a,(y -Y,P ,  

$1 = 4 2  In (Y - Yc) + c U Y -  Y,)", 

( 1 6 )  

(17)  

n= 1 
m 

?L= 1 

where - n < arg (y - y,) < 0. The ahs and bhs are given by 

a1 = 1,  a2 = - 1 / B ,  a3 = Qa2, 

a,  = ( l /n (n  - 1) B)  [n(n - 3 )  a,-l + a2Ba,-2 - a2 an-3], 
b 0 --- - :B, bl = I,  b2 = (1/B)-$a2B, 

1 
n (n- l )B  

b =-- [n(n - 3 )  bn-l + Ba2 b,-2 - a2b,-3 

+ (2% - 3 )  u,,-, - B( 272 - 1)  a,], 
where B = J(A2-c) .  
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In a region containing the second singular point the solutions are 

OD 

$1 = z C A Y  -Y,)", 

$2 = z: d,(Y - Yc)" + $8. (Y -Ye) - in19 

n = l  
m 

n=O 

where 0 < arg (y - yc) < n-. The cAs and dip are given by 
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c1 = 1, c2 = 1/B, c3 = $012, 

c ,  = [ - l / n ( n  - 3) c,-~ + a2 BcnP2 + 2c,-3]/n(n - 1) B, 

do = &B, d, = 1, d2 = - (1/B) + &t'B, 
d, = [ - Y~("IZ - 3) dn-l + a2Bd,-2 + a2dn-3 

-(2n-3)cn-,-B(2n- l)c,]/n(n- 1 ) B .  

is only valid up to the second critical point and hence, for the case when two 
critical points exist between the boundaries, the solutions must be matched in a 
region of common validity. In  this region 

From the form of the governing equation it is sufficient to match the function 
and its first derivative only at one point. Denoting this point by the subscript ' 0 ' 

910 = A 1 $10 4- B1$203 

K O  = Al$;o+Bl$;o> 

9 2 0  = A2$10+B2@20> 

Q;o = A,lCr;o+B2$;0, 

from which A,, B,, A,, and B, are calculated. 
Now four solutions have been found near each critical point. Near the first 

they are given by equations (12), (13), (16), and (17), or by (12), (13), and (4). 
Near the second critical point they are given by (14), (15), (20), and (21), or 
by (14), (15), and (4). Away from the critical point ((51 > 6) solution for $3 and 
q5* given by (6) and (7) should be used. 

4. The secular eqation 
Denoting the lower boundary by the superscript ' 1 ' and the upper boundary 

with the subscript '2 '  the boundary 
equation 

~ $11 921 

9% &1 

912 9 2 2  

&2 $;2 

conditions demand that the secular 

$31 941 I 

932 * ; l ~  9 4 2  = O 
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be satisfied. From an order-of-magnitude analysis this equation can be simplified 
to 

where fl = 9 1 1 $ 2 2 - $ 2 1 4 1 2 )  

f 2  = 911$;2-$214;2)  

f 3  = 4;1$22-9;1$12) 

f 4  = 9% $;2 - $;I 4;2- 

The expressions in equation (23) vary depending on the location of the critical 
points with respect to the boundaries and may change as a becomes small. 
Each possibility will now be studied. 

(i) Critical points near the boundaries, CL not small 
(see figure 2) 

Since two critical points are in the region of interest, at the lower boundary 
$2, #3, and fi4 are given by equations (12), (13), (16)) and (17) and at the upper 
boundary by ( la) ,  (15), (20), and (21). No simplifications can be made. 

FIGURE 2. Two critical points in the region of interest,. 

FIGURE 3. One critical point in the region of interest. 

(ii) A single critical point near the lower boundary, a not small 
(figure 3) 

Here only one critical point is in the region of interest. Thus $2) q$, and $4 

are given by equations (12), (13)) (16)) and (17 )  a t  the lower boundary and (14), 
(15), (16)) and (17) at the upper boundary. Again no simplifications can be made. 
It should be pointed out that this case requires approximately 15 terms in the 
series solutions for $1 and &. 

(iii) Criticalpoints near the boundaries, small a 

For this possibility expressions for $3 and $4 would be the same as those used in 
cases 1 and 2; but the expressions obtained for and $2 by Heisenberg, equa- 
tions (4)) could now be used. This would be necessary if the primary velocity 
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distribution were not parabolic, since the method of Frobenius cannot be used 
for a non-parabolic distribution. From equation (4) it  can be seen that 

fl = -c$22, 

f 2  = -c0;2, 

f* = u; 9;2 + 1/c$;zY 

$;2 = (U,-C)[a2h;(l)+a 4h ; (1  ) I  + (U2 - c)-l u; $12, 

(piz = (74, - c) [.2k;( l)] + ( U 2  - c)-1 u; $22. 

f 3  = u 1 $ 2 2 +  ~ / C $ I D  

where $12 = (U2-C)[ho(l)+a2h2(1)1, 

$22 = (EgTzCc) [ k ( l ) + E 2 k d 1 ) l 7  

The series in the expressions for $1 and $2 converge quite rapidly since the h’s, 
k’s and their derivatives decrease with increasing number of integrations. Only 
three integrations can be performed without the use of extensive numerical 
integrations by a computer. Hence the range of application of this method is 
limited. 

FIUURE 4. One critical point in the region of interest. 

(iv) Second critical point far from the boundary 
(see figure 4) 

If the second critical point is far from the boundary then Heisenberg’s solutions 
for $3 and $4 must be used near the top boundary. From equation (7) it is easily 

If [ ~ R ( U , - C ) ~ ] ~  9 1, this can be simplified to 

verifiedthat $42/$~2 = (~,-c)/[exp ( ~ i r )  J { ~ . R ( U ~ - ~ C ) ~ ) - ~ U ~ ] .  (24) 

$42/$:2 = exp [-%n1/2/{aR(U2-c)}* 

If the first critical point is too far from the lower boundary Heisenberg’s solutions 
would have to be used there. This is not expected in this study. 

With the appropriate solutions, equation (23) must now be solved. Setting 
ci equal to zero yields two non-linear algebraic equations (the real and imaginary 
parts) 

(25) 

in which c,, a, and R are the unknowns. For a given c, i t  is then possible to 
solve these equations simultaneously for a and R using a trial and error method. 
Newton’s method (or similar methods) does not give solutions which converge 
to the roots of the equations because of the large gradients involved. An initial 
guess at the solutions must be very close, too close to make these methods worth- 
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while. The method used here was to fix 01 and plot the two functions on the left- 
hand side of (25)  against R, then vary a by a small amount and again plot the 
two functions of R. When the two functions have the same zero the desired 
solution results. The calculations were done on the IBM 7090 computer at the 
University of Michigan. 

I 

5. Results and conclusions 
The results show that the superposing of a Couette flow on a Poiseuille flow 

has a definite stabilizing effect, the effect being so pronounced that a speed of the 
boundary equal to 10 yo of the maximum Poiseuille velocity increases the critical 
Reynolds number from 10,800 to 25,000 or an increase of 236 %. On the other 
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FIGURE 5a. Neutral stability curves for various boundary speeds. 

hand, it can also be seen (see figure 5) that as the Poiseuille component of flow 
is increased for the same Couette component, the flow becomes more and more 
unstable except for 0.2W < U, < 0*4W, and thus i t  can be concluded that a 
superposition of a Poiseuille flow on a Couette flow is, in general, destabilizing. 

From figure 6 it can be seen that as p, approaches 0.7 W the critical Reynolds 
number approaches infinity and the critical wave number approaches zero. 
Hence it can be concluded from this study that all Jlows for which U, > 0.7 W 
are stable to infinitesimal disturbances for all Reynolds numbers. Critical 
Reynolds numbers for which U, < 0.7 W can be found with the analysis given in 
this paper and are plotted in figure 6. The results give further support to the 
claim that pure Couette flow is always stable. 

Figure 6 also shows a small range, 0.4W > U, > 0-2W, for which the flow be- 
comes more unstable with increased Couette flow. It is perhaps significant 
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that this effect occurs when U, is approximately equal to the wave speed and that 
the point where U, = c appears to be the inflexion point. 

Increased Couette component of the flow has a destabilizing effect on waves 
with relatively small wave-numbers and a stabilizing effect on waves with rela- 
tively large wave-numbers. In all cases an increased Couette component de- 
creases the critical wave-number. This effect is shown in figure 5. 
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FIGURE 5 b. Variation of complex wave speed with Reynolds number 
for various boundary speeds. 

The curves for U, = 0 in figure 5 represent Poiseuille flow and agree very well 
with the results obtained by C. C. Lin. In this connexion one should remember 
that Lin used one-half of the channel width as a non-dimensionalizing parameter 
and hence the wave-numbers and Reynolds numbers in this study are double 
those obtained by Lin. There is slight disagreement for a > 1-6 since Lin used 
series solutions in powersof $for and $2 which do not converge rapidly enough. 
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Values of c, a and R for values of U2 from 0 to 0.2 W were found by using equa- 
tions ( l6 ) ,  (17), and (12) at the lower boundary and (20), (21), and (15) at the 
upper boundary as in case (i) in $4; and for values of U2 from 0.3 to 0.6 W by using 
equations (16), (17), and (12) at the lower boundary and (16), (17), and (15) 

Critical wave-number, ucr 
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FIGURE 6. U,/W as. critical Reynolds number and critical wave-number. 

C 

0.310 
0.315 
0.317 
0-318 
0.319 
0.320 
0.321 
0.322 

U 

0.180 
0.197 
0.196 
0-194 
0-190 
0.184 
0.177 
0.166 

R 
174,000 
147,000 
143,000 
141,000 
142,000 
143,000 
147,000 
153,000 

TABLE 1. Neutral stability for U ,  = 0.685W 

at the upper boundary as in case (ii) in $4. Case (iv), in which Heisenberg’s 
solution for q54 is used at the upper boundary, is illustrated in figure 5 for 

U, = O-BW, 0.66W and 0.68W 
and in tables 1-3. 

figure 5 are available on request from the Editor of the Journal. 

been studied in this report since the stability of the flow is of primary interest. 

Tables giving the values of c, a and R for the neutral stability curves in 

Asymptotic behaviour (for very large R) of the neutral stability curves has not 
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The results of this study were checked by finding the neutral stability curves 
for negative U,. This can be thought of as simply reversing the directions of y 

C 

0.310 
0.313 
0.315 
0.317 
0.318 
0.319 
0.320 
0.321 
0.322 

a 

0.119 
0-139 
0.147 
0.148 
0.146 
0-143 
0.137 
0.128 
0.117 

R 
266,000 
216,000 
198,000 
190,000 
189,000 
190,000 
194,000 
203,000 
220,000 

TABLE 2. Neutral stability for U ,  = 0.69" 

c a R 

0.315 0.066 443,000 
0.317 0.0732 387,000 
0.3175 0.0730 385,000 
0.318 0.072 386,000 
0.319 0.068 405,000 
0.320 0.059 459,000 

TABLE 3. Neutral stability for U ,  = 0.695" 

- 

and superposing a uniform flow, which should not affect the neutral stability 
curve. This was indeed found to be the case, that is, identical stability curves 
were found for & U,. 
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